Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress
نویسندگان
چکیده
Multi-coloured homologues of the green fluorescent protein generate some of the most striking visual phenomena in the ocean. Despite their natural prominence in reef-building corals and widespread use in biotechnology, their biological role remains obscure. Here, we experimented with larvae of Acropora millepora to determine what can be learned about a coral larva or recruit from its fluorescent colour. We performed 12 crosses between seven A. millepora colonies representing differing fluorescence phenotypes, the larvae of which were exposed to a natural settlement cue (crustose coralline algae) and heat-light stress. Parental effects explained 18 per cent of variation in colour and 47 per cent of variation in settlement. The colour of the larval family emerged as a predictor of the settlement success: redder families were significantly less responsive to the provided settlement cue (p = 0.006). This relationship was owing to a correlation between parental effects on settlement and colour (r(2) = 0.587, p = 0.045). We also observed pronounced (16%) decline in settlement rate, as well as subtle (2%), but a statistically significant decrease in red fluorescence, as a consequence of heat-light stress exposure. Variation in settlement propensity in A. millepora is largely owing to additive genetic effects, and is thought to reflect variation in dispersal potential. Our results suggest an optical signature to discriminate between long- and short-range dispersing genotypes, as well as to evaluate stress. Further research in this direction may lead to the development of field applications to trace changes in coral life history and physiology caused by global warming.
منابع مشابه
Chemical mediation of coral larval settlement by crustose coralline algae
The majority of marine invertebrates produce dispersive larvae which, in order to complete their life cycles, must attach and metamorphose into benthic forms. This process, collectively referred to as settlement, is often guided by habitat-specific cues. While the sources of such cues are well known, the links between their biological activity, chemical identity, presence and quantification in ...
متن کاملChemical effects of macroalgae on larval settlement of the broadcast spawning coral Acropora millepora
Recovery of degraded reefs is dependent on the settlement of coral larvae into habitats typically dominated by benthic algae, so that benthic algae may play pivotal roles in coral settlement and reef recovery. Here we demonstrate that waterborne influences of macroalgae could affect coral settlement before larvae contact reef substrata and that such effects vary between macroalgae. We tested fo...
متن کاملCrustose Coralline Algae and a Cnidarian Neuropeptide Trigger Larval Settlement in Two Coral Reef Sponges
In sessile marine invertebrates, larval settlement is fundamental to population maintenance and persistence. Cues contributing to the settlement choices and metamorphosis of larvae have important implications for the success of individuals and populations, but cues mediating larval settlement for many marine invertebrates are largely unknown. This study assessed larval settlement in two common ...
متن کاملCoral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis
Here we describe an efficient and effective technique for rearing sexually-derived coral propagules from spawning through larval settlement and symbiont uptake with minimal impact on natural coral populations. We sought to maximize larval survival while minimizing expense and daily husbandry maintenance by experimentally determining optimized conditions and protocols for gamete fertilization, l...
متن کاملOcean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions.
Ecology Letters (2012) 15: 338-346 ABSTRACT: Successful recruitment in shallow reef ecosystems often involves specific cues that connect planktonic invertebrate larvae with particular crustose coralline algae (CCA) during settlement. While ocean acidification (OA) can reduce larval settlement and the abundance of CCA, the impact of OA on the interactions between planktonic larvae and their pref...
متن کامل